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Flexible Dielectric Waveguides with
Powder Cores

WILLIAM M. BRUNO, MEMBER, IEEE, AND WILLIAM B. BRIDGES, FELLOW, IEEE

Abstract —Flexible dielectric waveguides have been demonstrated at 10
GHz and 94 GHz using thin-wall polymer tubing filled with low-loss,
high-dielectric-constant powders. Absorptive losses of the order of 10
dB/meter were measured at 94 GHz with nickel-aluminum titanate and
barium tetratitanate powder in polytetrafluoroethylene (PTFE) lightweight
electrical spaghetti. Bending losses at 94 GHz were negligible for curva-
ture radii greater than 4 cm. Kuhn’s theory of three-region cylindrical
dielectric waveguide was used to calculate dispersion curves for the lower
order modes for several combinations of dimensions and dielectric con-
stants. Good agreement was obtained between experimental and theoreti-
cal values of guide wavelength. A scheme is proposed for classifying hybrid
modes of three-region guides based on |E, /H,|. For two-region guides, it
reduces to Snitzer’s familiar scheme.

I. INTRODUCTION

ETAL WAVEGUIDE used at millimeter-wave fre-

quencies is rigid and expensive (typically $40 per
meter for WR-10 W-band extruded copper waveguide,
exclusive of end flanges). An attractive alternative would
be an inexpensive, flexible dielectric guide analogous to
optical fiber. Flexible millimeter waveguides consisting of
cylindrical plastic rods have been demonstrated [1], but
these guides were “unclad” and thus subject to loss from
contact with nearby objects or supports. A flexible milli-
meter waveguide with a PTFE core and a foamed PTFE
cladding is commercially available from W. L. Gore, Inc.
[2], but it is rather bulky and subject to bending losses
because the core and cladding have similar dielectric con-
stants. Another clad flexible guide was demonstrated by
Shindo and Ohtomo with a polyethylene core, polyfoam
cladding, and a polyethylene jacket [3].

An ideal dielectric waveguide would have a small core
consisting of a flexible, low-loss material with a large
dielectric constant. The cladding would also be flexible
and low in loss, and its dielectric constant would be much
smaller than that of the core, so that the fields of the
guided mode would decrease rapidly with distance in the
cladding.

Unfortunately, all flexible solids with low millimeter-
wave losses, such as PTFE and polypropylene, have small
dielectric constants (about 2). If they were used for clad-
ding, we would have no flexible solid for a core; if they
were used for the core, we would have no material for the
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cladding. Our solution to this dilemma was to use the
polymers as the cladding and a low-loss, high-dielectric-
constant solid material in powder form as the flexible core
of the waveguide.

In Section II of this paper we discuss the theory of these
three-region (core/cladding /surrounding medium) dielec-
tric waveguides and present dispersion curves for parame-
ters typical of our guides. In Section III, we describe the
experimental investigation of these powder core guides.

II. THEORY

A. The Characteristic Equation

The dielectric tubes employed in this study had wall
thicknesses much smaller than a wavelength to allow access
to the fields of the guided mode for making guide-wave-
length measurements. Consequently, we could not make
the simplification common to optical fiber analyses of
treating a three-region guide with thick cladding as a
two-region guide, ignoring the presence of the outermost
region. Furthermore, since the difference in dielectric con-
stant or refractive index between the materials used here
for core and cladding was typically large, approximations
based on small index differences [4], also common in
optical fiber analysis, were generally inapplicable. The
exact analytical theory of lossless three-region cylindrical
dielectric waveguides, given by Kuhn [5], was used to
predict propagation constants for the modes of powder-
filled tube guides.

The geometry of a three-region cylindrical dielectric
waveguide is shown in Fig. 1. Region 1 is the core of
the waveguide, region 2 is the cladding, and region 3 is the
space surrounding the waveguide. For the fields of the
propagating modes to be well confined to the core of the
waveguide, the relative dielectric constants of the three
regions must satisfy €, > e, > ¢,. Since the materials are
assumed to be lossless in this first-order analysis, €, €,,
and e, are real. For a low-loss guide, it is usually sufficient
to treat the loss as a perturbation, that is, to ignore its
effect on the propagation constant, B(w).

To find the propagation constants for the modes of
three-region cylindrical dielectric waveguide, it is necessary
to find the solutions to the wave equation for which the
tangential field components are continuous at the two
material boundaries. Kuhn’s approach was to solve for the
forms of the axial fields and then use these in Maxwell’s
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Fig. 1. Cross section of three-region cylindrical dielectric waveguide.
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Fig. 2. Core mode and cladding mode regions of a three-region cyln-
drical dielectric waveguide.

curl equations to derive expressions for the other field
components. The characteristic equation giving the propa-
gation constants is then obtained from the equations ex-
pressing the continuity of the tangential fields at the
boundaries.

The three-region guide solutions require a distinction
between mode types that does not arise in the two-region
case: Propagating modes are classified as either “core”
modes or “cladding” modes [5}. The mathematical func-
tions used to describe the field variations are different for
these two classes of modes. If the mode propagation
constant S satisfies 8 > ke, , where k, = \/m , then the
mode is a core mode. Core modes propagate with phase
velocities less than ¢/ /572 but greater than ¢/ ‘/E; . On the

other hand, modes for which 8 < ko‘/’ez are called cladding
modes. These modes have phase velocities less than ¢/ @

but greater than ¢/ \/2; . Physically, cladding modes have
larger phase velocities than core modes because a larger
fraction of the power of a cladding mode propagates
outside the core of the waveguide. Of course, for any
propagating mode the propagation constant must lie be-
tween the value for a plane wave in free space, k,, and a
plane wave in the core diclectric, kgfe;. Modes with
values of B lying outside this interval are cut off (Fig. 2).
Consider the system of cylindrical coordinates shown in
Fig. 1, with the z direction coinciding with the longitudinal
axis of the waveguide. The form of the z components of
the fields of a core mode can be found using separation of
variables. Choosing the Bessel functions .with the proper
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behavior at the origin and as » — co, we have
E,, = AJ,(kyr)cos(me)exp(— jBz + jwt)
H,,= BJ, (k,r)sin(m¢)exp(— jBz + jwt)
E,,=|[CL,(k,r)+ DK, (k,r)]

-cos(me)exp(— jBz + jwt) (1)
H,,=[EL,(kyr)+ FK, (k,r)sin(me)exp(— jBz + jwt)
E,,=GK, (kyr)cos(me)exp(— jBz + jwt)
H,, = PK, (k,r)sin(me)exp(— jBz + jot).

1, and K, are the modified Bessel functions of the first
and second kind. Here m is the azimuthal eigenvalue; A,
B, C, D, E, F, G, and P are constants; and the real
constants ky, k,, k, are defined by

k12 = flk(z) _‘B2
k3=B*—e;k§
N

The remaining radial and azimuthal field components
can be expressed in terms of the z components using
Maxwell’s curl equations. (See, for example, [6] or [7].)
These field components will exhibit similar functional vari-
ations with (r, 9, z) as the z components in each region
since they are related to the z components simply by
differentiation. Note that for the core modes the z compo-
nents of the electric and magnetic fields are oscillatory
with r in the core region (Bessel function J,), that they
vary smoothly in the cladding region (modified Bessel
functions I, K,,), and that they decay exponentially in the
exterior region (K, only).

By contrast, our definition of a cladding mode requires
the constant k, to be imaginary, so we define k’ as

2)

(3)

while k; and k, remain as before. The field components
E,,, H,, then become
E,,=[C'J,(Kyr)+ DY, (k5r)]
-cos(me)exp(— jBz + jwt)
H,, = [E"J,(kyr)+ F'Y,(kyr)]
-sin(me¢)exp(— jBz + jwt).

The z components of the fields in regions 1 and 3 retain
the same forms as for core modes. Note that the fields in
the cladding may become “oscillatory,” depending on the
cladding thickness.

Equating the tangential field components at the bound-
aries between regions yields a set of eight linear homo-
geneous equations for the eight constants (4, B,C,---, P.).
Setting the secular determinant of this system to zero
yields the characteristic equation. This equation is rather
complicated and must be solved numerically. Kuhn [5] and
Safaai-Jazi and Yip [8] have obtained simplified, but still

cumbersome, forms of the characteristic equation by alge-
braic manipulation of the secular determinant. However,

(ky)* = —k3 = e,k — B*

(4)
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these forms cannot be solved analytically either and they
do not lend themselves to accurate and unambiguous
numerical solution. A simple, fast, and accurate numerical
method is to evaluate the secular determinant by Gaussian
elimination for trial values of the propagation constant £.

B. Classification of Modes

As in the case of a simple two-region dielectric rod,
when the azimuthal eigenvalue m is zero, a great simplifi-
cation is possible. The overall characteristic equation re-
duces to two much simpler equations. One of these equa-
tions corresponds to TM modes and the other corresponds
to TE modes [5], [8]. Since m = 0 the fields of these modes
have no circumferential variation. TM and TE modes are
designated TMy,;, TM,, TM3,--- and TEy, TEp,- - -,
where the second subscript gives the order in which the
modes cut on (i.e., the propagation constant B8 becomes
real) to become guided as the frequency is increased.

Again, as in the case of the two-region dielectric rod, all
modes for which m is not zero are termed “hybrid” modes
because longitudinal components of £ and H are simulta-
neously present. Several methods have been proposed [5],
[8] for classifying hybrid modes for three-region guide, but
no method has been universally accepted. Most schemes
classify hybrid modes into one of two categories, HE, ,
and EH,,,. However, the criterion used to determine
whether a mode is HE or EH is still a subject of con-
troversy.

Most schemes for classifying hybrid modes of three-
region guide are based on schemes previously applied to
simple dielectric rods, which we review briefly here. One of
the earliest schemes for the dielectric rod was proposed by
R. E. Beam in 1949 [9]. Beam’s method is based on the
relative contributions of E, and H, to a transverse field
component at some reference point. If E, makes the larger
contribution, the mode is designated EH. If the contribu-
tion from H, is larger, the mode is classified as HE. In this
scheme, the choice of the names HE and EH is reasonable
because they are meant to express the hybrid character of
the modes and to indicate which longitudinal field compo-
nent is “more significant” in some sense. In addition, there
is historical precedent for this choice of names. They are
adapted from names given to modes of metal guides: TE
modes of metal guides have been called H modes and TM
modes have been called E modes, particularly in the British
literature.

Although the spirit of this naming scheme makes sense,
Beam’s method is still arbitrary because it depends on the
particular transverse component chosen to judge the rela-
tive importance of H, and E,. Objecting to the arbitrari-
ness of Beam’s method, Snitzer [10] proposed a scheme for
dielectric rods based on a factorization of the characteristic
equation into the form F1(8)* F2(B) = 0. Since all modes
result from either F1=0 or F2 =0, the factorization di-
vides the modes into two sets. Snitzer observed two dif-
ferences between the sets. First, modes stemming from
F1=0 obey different cutoff conditions than ones associ-
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ated with F2 = 0. Second, the sign of the amplitude coeffi-
cient ratio A/B (c.f. (1)) is negative for hybrid modes
belonging to one set and positive for hybrid modes from
the other set. Since it had become conventional by this
time to refer to the fundamental mode as HE,;, Snitzer
proposed that all hybrid modes for which the sign of 4 /B
is the same as for the fundamental be designated HE .
Hybrid modes for which A4 /B has the opposite sign were
to be designated EH, ,. Here n is the order in which a
mode of given class (either HE or EH) and azimuthal
eigenvalue cuts on to become guided as frequency is in-
creased.

Although Snitzer’s scheme allows the unambiguous clas-
sification of hybrid modes into two sets, the use of the
names HE and EH is at variance with Beam’s scheme:
modes called HE do not have longitudinal A dominant
over longitudinal E. Similarly, EH modes are not “E-like.”
In fact, the opposite is true [7], [11]. The magnitude of
A /B in normalized units of impedance is always greater
than unity for hybrid modes of the diclectric rod desig-
nated HE by Snitzer and less than unity for modes called
EH. Hence, Snitzer’s HE modes are truly “E-like” and the
EH modes are “H-like.”

Other classification schemes have been proposed for the
dielectric rod [12], [13]. The most commonly used of these
other methods [13], [14] is based on cutoff conditions of
hybrid modes. It results in a classification of hybrid modes
identical to Snitzer’s.

In the case of the dielectric rod, Snitzer’s method and its
equivalents have gained wide acceptance [7], [11], [14]. For
three-region guide, however, no classification scheme has
yet received wide acceptance. Following Snitzer, Kuhn [5]
used the sign of A/B to classify hybrid modes of three-
region guide as either HE,,, or EH . However, he does
not show the existence of any important physical dif-
ferences between hybrid modes for which the sign of 4 /B
is different. Since the sign of 4 /B, in itself, is not particu-
larly significant, the separation of hybrid modes into two
categories using this criterion is not meaningful.

Safaai-Jazi and Yip [8] have proposed a classification
scheme based on a factorization of the characteristic equa-
tion of three-region guide into a form F3(B)* FA(8)=0.
Hybrid modes whose propagation constants are found
from F3(B)=0 are designated HE,, and those whose
propagation constants are given by F4(f) =0 are called
EH,, ,. Here again, the authors do not show any general
physical differences between modes in each of the two
classes. Furthermore, there is more than one way to ex-
press the characteristic equation of three-region guide as a
product of two functions of 8 set to zero. Different
factorizations may result in different classifications of the
modes.

We propose here still another scheme for classifying
hybrid modes of three-region diclectric waveguide, one
based on physically meaningful differences, namely, that
the magnitude of the ratio of the longitudinal fields be
compared to the wave impedance of a plane wave traveling
at the same phase velocity. We define a wave imped-
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The ratio |4 /B is, in some sense, the magnitude of the
ratio of E;, to H,,, the longitudinal fields in the core
region. If {4 /B| evaluated far above the cutoff frequency
is greater than Z, then the mode is to be called HE,,
Modes for which |{4/B| is less than Z will be EH,,,
When evaluated far above cutoff, |4/B|/Z approaches
unity for all hybrid modes. The classification scheme pro-
posed here is based on whether unity is approached from
above or below.

According to this scheme, hybrid modes can be classi-
fied unambiguously into two physically distinct categories
whose names reflect the distinction. The fundamental mode
is still the HE;; mode. Although it would be preferable for
historical reasons to have the first letter in the name of a
hybrid mode, rather than the second, indicate the “domi-
nant” longitudinal component, such a choice would change
the fundamental mode to “EH,;.” As it stands, our pro-
posed scheme reduces to Snitzer’s well-accepted scheme
for the simple dielectric rod.

C. Numerical Results

Computer programs were written which solved the
three-region characteristic equation for m=1 (HE,, and
EH,, modes) and m = 0 (TE,, and TM,, modes) by using
Gaussian elimination to evaluate the secular determinant
for trial values of propagation constant. Examples of com-
puted values for propagation constant for different param-
eters appropriate to our 10 GHz and 94 GHz waveguides
are given in Section III. As reported there, the agreement
between theoretical and experimental values was excellent.

Here we present theoretical dispersion curves otained
with the programs for three-region dielectric waveguides
useful at microwave frequencies. These guides have much
thinner cladding regions (r, =1.25r,) than typical optical
fibers. In addition, the dielectric constant difference be-
tween core and cladding, €, — ¢,, is much larger than that
in typical optical fibers.

Sets of dispersion curves are given for ¢; of 4, 8, and 12
(Figs. 3 through 5). For each set, ¢; is 1 (air) and ¢, is 2.08
(PTFE). The abscissa is kor, = 27fr, /c. It may be thought
of cither as frequency for a guide with fixed core radius,
ry, or as core radius for operation at a fixed frequency, f-

The most noticeable difference between Figs. 3 through
5 and typical dispersion curves of two-region guides is the
order of the mode cutoff frequencies. For two-region
guides, the TE,, and TM,,, modes have identical cutoffs,
as do the EH, , and HE, , ., modes. However, for three-
region guide, these pairs of modes do not have identical
cutoffs, as shown in Figs. 3 through 5. Values of kor; at
cutoff are given in Table L.

Another difference between Figs. 3 through 5 and typi-
cal dispersion curves of two-region guides has to do with
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Fig. 4. Dispersic'm curves of three-region cylindrical dielectric wave-
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Fig. 5. Dispersion curves of three-region cylindrical dielectric wave-

guide. ¢, =12, ¢, =208, ¢, =1. , =1.25 1.

the crossovers of the TE,, and TM,, modes in Figs. 3
through 5. (The TE,, and TM,, modes of dielectric rods
do not cross.) Safaai-Jazi and Yip [15] have reported that
these modes also cross for three-region optical guides
where the refractive index difference between core and
cladding is small. (Their results were obtained from the
exact three-region analysis, not an approximation based on
small refractive index difference.) Hence, these crossovers
must be attributable to finite cladding thickness.
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Fig. 6. Samples of W-band dielectric waveguide made by filling PTFE
spaghetti with various low-loss dielectric powders.

III. EXPERIMENTAL WORK ON
THREE-REGION GUIDES

Flexible dielectric waveguides were demonstrated at both
10 GHz and 94 Ghz by filling hollow, low-dielectric-con-
stant polymer tubes with low-loss, high-dielectric-constant
powders. Flexible guides with losses as low as 0.12 dB/cm
were demonstrated at 94 GHz. These guides also exhibited
neglible bending loss for radii of curvature greater than 4
cm. Fig. 6 is a photograph of some samples of W-band
flexible guide made by this technique.

A. 10 GHz Modeling Experiments

Our first dielectric waveguides made by filling flexible
hollow tubes with dielectric powders were designed for 10
GHz to avoid inaccuracies due to the small guide dimen-
sions at 94 GHz. In addition, the dielectric properties of
the powders were known at 10 GHz, so the guides could be
compared with theory.

The powders used for the high-dielectric-constant core
were Emerson and Cumming Ecco-flo powder, Trans-Tech
D-30 nickel-aluminum titanate, and Trans-Tech D-38
barium tetratitanate. The particles of the D-30 and D-38
powders ranged in size from 43 pm to 100 pm. Trans-Tech’s
literature gives € = 31 and tané < 0.0002 for solid D-30 at
10 GHz, and € = 37 and tan$ < 0.0005 for solid D-38 at 6
GHz. They do not specify the dielectric properties of the
powders. The Ecco-flo powder is specified by Emerson
and Cumming to have ¢=12 and tand = 0.0007 at .10
GHz. ;

In order to design a dielectric waveguide with a powder
core, it is necessary to know how the dielectric constant of
the powder will vary with the packing density. This rela-
tionship was determined for each powder at 10 GHz by
using the shorted waveguide technique [16] to the measure
dielectric constant. A typical plot of dielectric constant
versus density (nickel-aluminum titanate) is given in Fig.
7. Over the density range shown, the dielectric constant is
virtually linear with density (although the curve does not
pass through the point (0, 1)).
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TABLEI
CALCULATED VALUES OF kg1 AT CUTOFF FOR THREE-REGION
GUIDE WITH r, =1.25r) AND €, =1

Mode e1/e, = 4/2.08 g1 /e2 = 8/2.08 g1/e2 = 12/2.08

THo 1 1.24 0.82 .65
TEo 1 1.28 0.88 0.71
EHi1 2.02 1.34 1.09
HE: 2 2.07 1.42 1.15
TMa 2 2.77 1.86 1.49
TEn 2 2.92 2.02 1.63
EHiz 3.53 2.39 1.93
HE) 2 3.70 2.56 2.08
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Fig. 7. Relative dielectric constant versus density for Trans-Tech D-30

powder. 70 percent of particles between 100 um and 43 pm, 30 percent
less than 43 pm.

TABLE 11
DIELECTRIC PROPERTIES OF TUBING MATERIALS AT 10 GHz

Material € tan &
PTFE 2.08 .0004
polyethylene 2.25 .0004
Corning 7740 Pyrex® 4.52 .0085

Data from A. R. Von Hippel, Dielectric Materials and Applications.
New York: Wiley, 1958, pp. 301-370.

The cladding materials used were PTFE, polyethylene,
and Corning 7740 glass (Pyrex). The dielectric properties
of these materials at 10 GHz as given by von Hippel [17]
are shown in Table II. Although the Pyrex tubes were
inflexible, they were useful for making accurate guide
wavelength and attenuation measurements.

Each waveguide was made by filling a tube with powder
and plugging the ends with polyfoam. The inner diameter
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TABLE III
COMPARISON OF MEASURED AND THEORETICAL GUIDE
WAVELENGTHS FOR HE;; MODE OF THREE-REGION GUIDE

AT X-BAND
Core Cladding Freq. Ao Core Cladding Guide Wavelength
Radius Radius (GHz) . Mat'l. £ Mat'l. £ Meas Theo.
{cm) {cm) {em) {cm) {cm)
0.33 0.45 10.000  3.00 1 7.62 B 4.52 2.05  2.06
0.25 0.35 10.000  3.00 2 13.45 A 4.52 2.30  2.19
0.26 0.30 10.000  3.00 2 11.40 B 2.08 2.88  2.86
0.26 0.30 11.311  2.65 2 11.40 B 2.08 2.14  2.09
0.30 0.40 10.940  2.74 2 13.02 ¢ 2.25 1.38  1.32
0.32 0.47 9.794  3.06 2 12.39 c 2.25 1.71  1.65%
Material 1 is nickel-aluminum titanate (Trans-Tech D-30).
Material 2 is Emerson and Cuming Ecco-flo powder.
Material A is Corning 7740 Pyrex glass.
Material B is PTFE.
Material C is polyethylene.
of the tube was chosen so that the HE,; mode would gg’vt"bgz
. . e rturber
propagate with a wavelength significantly smaller than the
free-space wavelength. Coupling was achieved by inserting 1048
one end of the tube into a flared section of WR-90 source duretl.onal ::J:I%ur'de
rectangular metal waveguide (a commercial TE , rectangu- e
lar to TE,; circular metallic waveguide transition). This ~ — = =
metal waveguide transition was used because the trans- absorber
verse fields of the TE,; circular mode of metal waveguide diode
[18] are known to be similar to those of the HE;; mode of detector el
a cylindrical dielectric rod. (Although surprisingly good power

coupling could also be obtained by inserting the dielectric
guide directly into the open-ended WR-90.) The dielectric
waveguide was supported inside the flared section with a
form-fitting polyfoam insert. With the waveguide inserted
to the proper depth (determined by trial and error), the
reflected power was less than 10 percent, sufficiently small
to measure guide wavelength accurately. In addition, there
was no detectable radiation field away from the coupler
and waveguide. A metal perturber placed a few mm away
from the dielectric guide, outside the volume of the (HE,;)
guided mode, caused no change in reflected power. Fi-
nally, lossy foam was wrapped around the tube at the far
end to prevent reflections.

Guide wavelength measurements were made by sliding a
metal washer along the full length of the guide and observ-
ing the periodic variation in reflected power, as indicated
schematically in Fig. 8. The small reflection from the
perturber changes phase as the perturber moves, and inter-
feres with the small reflection from the coupler. The mea-
sured guide wavelengths were significantly less than that
for free-space propagation, indicating that the HE,; mode
was well confined. Table III shows that the measured
wavelengths were in excellent agreement with those predic-
ted by the theory of lossless three-region cylindrical dielec-
tric waveguide, as presented in Section II. The values of
€.ore listed in Table IIT were determined by using the ¢

WW‘”%

—*'I F— perturber position
Ag/2

Fig. 8. Schematic of setup for guide wavelength measurement. Also
shown is a curve of reflected power versus perturber position.

versus density data and determining the density of the
powder in the tube by precision weight measurement.
Preliminary transmission and bending loss measure-
ments were made on powder-filled tubes at 10 GHz by
measuring directly the power transmitted to the far erid of
the guides. The transmitted power was determined by
inserting the far end into a section of rectangular metal
waveguide connected to a diode detector. These measure-
ments indicated that the transmission and bending losses
were low. For example, the total insertion loss, including
any coupling losses, for a straiglit polyethylene tube with
length equal to 1 m and inner diameter equal to 0.6 cm
was 4 dB when the tube was filled with Ecco-flo powder
having dielectric constant equal to 12.8 +0.1. Bending this
guide into circular arcs caused less than a 0.2 dB increase
in loss for curvature radii greater than 28 cm+1 cm. Since
we were primarily interested in millimeter-wave guides, we
did not pursue this investigation far enough at 10 GHz to
determine precisely the magnitude of these losses. Instead
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we began a program to build and test flexible 94 GHz
powder-filled tube waveguides.

B. 94 GHz Experiments

Flexible dielectric waveguides for operation at 94 GHz
were made by filling PTFE tubes (18-23 AWG lightweight!
electrical spaghetti) with dielectric powders. The guides
were “designed” using the theory of lossless three-region
cylindrical dielectric waveguide so that the HE;; mode
would be significantly slowed. In order to use the theory,
the dielectric constants of the powders were needed. We
used the values measured at 10 GHz because of the
difficulty of controlling the length of a powder sample
sufficiently accurately to measure its dielectric constant at
94 GHz with the shortest-waveguide technique. The dielec-
tric constant of a powder composed of low-loss dielectric
material should not vary much between 10 GHz and 94
GHz if the powder grains are small relative to the wave-
length in the material at 94 GHz [19].

Coupling to metal waveguide was achieved by inserting
the end of the dielectric tube into a slightly flared section
of WR-10 metal waveguide. As before, guide wavelength
measurements were made by sliding a metal perturber
along the length of the waveéguide and observing the peri-
odic variation in reflected power (Fig. 8).

The Ecco-flo powder proved to be so lossy at 94 GHz
that only surface waves would propagate along PTFE
tubes filled with this powder. These waves were the same
kind of v=c waves that were previously observed on
KRS-5 guides [20].

We initially tried the same D-30 and D-38 powders used
at X-band, but were unable to obtain uniform wavelengths
along the guides. The measured wavelengths varied by as
much as 100 percent with distance along the guide. We
believe that one of the factors contributing to this wave-
length variation was the random variation with length of
the cross-sectional dimensions and circularity of the small
(21,22,23 AWG), commercial grade spaghetti supporting
these powders. Another source of error was that the small
size of the tubes made them difficult to fill uniformly with
powder. Finally, the powder-filled tubes were so flexible
that they would bend during the measurement, making the
length of a period difficult to measure accurately.

The foregoing difficulties were overcome by using
powders with smaller grain size. These powders were
Trans-Tech MCT-40 magnesium-—calcium titanate, D-30
nickel-aluminum titanate, and D-8512, an “improved”
barium tetratitanate.” For each of these powders, all par-
ticles were less than 43 pm in size. Since these powders
had smaller grain sizes and thus smaller packing fractions,
they had lower dielectric constants than the others, allow-

LPTFE electrical spaghetti is available in three types, according to wall
thickness. “Standard wall” spaghetti has the thickest walls, followed in
decreasing order of thickness by “thin wall” and “lightweight.”

2Trans-Tech states that D-8512 has lower loss than D-38 and also a
smaller thermal coefficient of dielectric constant. Otherwise, we do not
know the nature of the “improvement.”

TABLE IV
COMPARISON OF MEASURED AND THEORETICAL GUIDE
WAVELENGTHS FOR HE|;, MODE OF THREE-REGION GUIDE
AT W-BAND

Powder Core Freq. tcare Guide Wavelength
Radius (GHZ) Meas. Theo.

(mm} (mm) {mm)

D-30 .43 94.78 5.60 2.48 2.42

D-8512 -43 94.72 5.45 2.5. 2.47

D-8512 .48 94.75 5.83 2.21 2.10

D-8512 .53 94.10 4.79 2 06 2.24

Cladding material is PTFE, ¢ = 2.08.
Cladding thickness is 0.15 mm.
The free-space wavelength is approximately 3.2 mm.

ing us to use larger diameter spaghetti (18,19,20 AWG)
while still allowing propagation of only the fundamental
HE,; mode. Thus, the problems associated with small
tubing, dimensional imperfections, packing irregularities,
and excessive flexibility were all reduced significantly. The
smaller particles also made it easier to pack these powders
uniformly in the tubes. As a result of these improvements,
the measured guide wavelengths agreed well with the theo-
retical values for the HE;; mode, as shown in Table IV.
For the guides represented in Table IV, there were no
beats in the pattern of reflected power versus perturber
position, indicating that the guides were single-mode, as
intended.

Total transmission attenuation measurements were made
by comparing the power received with a diode detector at
the far end of the waveguide with the power incident on
the guide. Power was coupled from the far end of the
dielectric waveguide by inserting it into a flared section of
metal waveguide connected to the detector. The incident
power was determined by removing the dielectric wave-
guide and the flared coupling sections and connecting the
detector directly to the WR-10 metal wavegnide. A second
Schottky diode detector connected to a small W-band horn
antenna was used as a movable probe to determine that
there was an insignificant amount of radiation from the
couplers and waveguide. Also, the power reflected back
into the metal waveguide from the feed coupler was ap-
proximately —20 dB below the incident power. Thus, we
concluded that there was very little power lost in coupling
by reflection or radiation, so that the ratio of the incident
power to the power detected at the far end represents a
reasonable measure of the true dielectric waveguide loss.
The loss per unit length is then this loss divided by the
length of the dielectric waveguide, typically 30 cm. Table V
gives the results of attenuation measurements on a few
straight powder-filled Teflon tubes.

Initial bending loss measurements were made using the
same setup as for attenuation measurements on straight
guides (Fig. 9). The plane of bending was perpendicular to
the (vertical) plane of polarization of the HE,; mode. A
problem encountered during these measurements was that
the ends of the Teflon tubes tended to change position
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TABLEV
ATTENUATION OF STRAIGHT MM-WAVE GUIDES

Powder Core Freq. Ecare Measured Loss
Radius (GHz} Guide (dB/cm)
{mm} Vavelength
(mm)
D-30 .43 94.78 5.60 2.48 .12
D-8512 .43 94.72 5.45 2.55 .13
D-8512 .48 94.75 5.83 2.21 .14
MCT-40 .53 94.08 4.48 2.12 .26

Cladding material is PTFE, ¢ =2.08.

Cladding thickness is 0.15 mm.

The theoretical loss of silver or copper WR-10 waveguide is approxi-
mately 0.025 dB/cm at 94 GHz; however, loss in typical pieces may be
0.05 dB/cm or more.

‘ feed

diode
detector

Fig. 9. Schematic representation of the setup for making attenuation
and bending loss measurements.

inside the flared metal waveguide couplers when the tubes
were bent in arcs with radius less than about 4 cm. This
movement changed the quality of the coupling between the
dielectric waveguide and the metal waveguides, making it
difficult to obtain accurate measurements of bending losses.
We did not attempt to refine the mechanical structure to
improve these measurements since we had already begun
similar measurements on precision-machined rigid rectan-
gular dielectric guides [19], [24]. However, when the tubes
were bent into circles with curvature radius greater than
about 4 cm, bending losses were immeasurably small,
given the 0.2 dB measurement uncertainty.

A straightforward comparison of our bending loss ob-
servations to theory is not possible because we know of no
bending loss theory that applies to three-region guides with
thin cladding, large refractive index difference between
layers, and curvature radius as small as 20 guide wave-
lengths. In fact, all the theories with which we are familiar
assume that the refractive index differences between layers
are small. Keeping these limitations in mind, we have used
the theory of Kuester and Chang [21], [22] for curved
dielectric rods for rough comparison. To use the theory,
the rod radius and dielectric constant were chosen equal to
that of the core of the actual guide, and the surroundings
of the rod were assumed to have a relative dielectric
constant equal to one. The theoretical curvature losses
were calculated for the vertically polarized LP;;, mode, the
“linearly polarized approximation” mode corresponding to
the exact vertically polarized HE,; mode. Applied in this
way, the theory predicted that a curvature radius of less
than 2 cm would be necessary for our guides to exhibit

9]
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bending losses comparable to our absorptive loses. We
have obtained a similar result in comparing Marcatili’s
bending loss theory for rectangular dielectric guides [23]
with experimental measurements of powder-filled channels
in solid dielectric substrates [19], [24].

IV. CoONCLUSIONS

Guide wavelengths calculated using Kuhn’s theory for a
three-region lossless dielectric waveguide are in good
agreement with experimental measurements at 10 GHz
and 94 GHz. A hybrid mode classification scheme for -
three-region guides based on the ratio |E, /H,| seems more
soundly based on physical properties and reduces to
Snitzer’s familiar scheme for two-region guides. Highly
flexible guides consisting of low-loss, high-dielectric-con-
stant powders packed inside thin-wall plastic tubing ex-
hibit losses of the order of 10 dB/meter, low enough at 94
GHz to be attractive for short length transmission. Bend-
ing losses for 94 GHz guide were negligible compared to
absorptive losses for curvature radii greater than about 4
cm.
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